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GROUND-WATER DISCHARGE

To understand ground-water flow in an aquifer system in a humid region and to delineate
recharge and discharge areas of the aquifer system, the relation between ground and surface
waters must be understood. In general, ground water discharges to a stream if the water
table is above the stage of the stream, whereas the stream loses water to the aquifers if the
water table is below the stream stage. Seasonal fluctuations of ground-water levels in shallow
flow systems with large recharge areas contribute to fluctuations in ground-water discharge
to streams (base flow) over the course of a year. Under natural conditions, flow in the
regional drains and their principal tributary streams throughout the study area increases with
distance downstream because ground water discharges to these streams except when water is
forced into streambank deposits during floods. Ground-water discharge in Ohio is highest
where streams follow outwash deposits or flow across ice-contact stratified drift and is lowest
where streams flow across ground-moraine, end-moraine, and lacustrine deposits (Cross,
1949).

Ground-water discharge to streams can be estimated from streamflow data by separating
streamflow hydrographs into their direct runoff and base flow components. Such estimates of
base flow do not distinguish between discharge from local, intermediate, and regional flow
systems within an aquifer system, but they are useful to help quantify a general water budget
for the aquifer system. Mean ground-water discharge to streams for the period associated
with unregulated or only minimally regulated low flow was computed from such data for
selected streamflow-gaging stations within the study area. These values describe the central
tendency of ground-water discharge associated with long-term steady-state conditions in the
aquifer system, but do not provide information on the adequacy of streamflow for specific
uses at specific times.

Because the Midwestern Basins and Arches—RASA project is regional in scope,
ground-water flow in shallow, local flow systems could not be fully investigated as part of this
study. As a result, estimating discharge to streams from comparatively stable, regional and
possibly intermediate flow systems within the aquifer system was also desirable. Estimates of
this sustained ground-water discharge component of base flow were computed by further
analysis of the base-flow data described above.

DATA ANALYSIS

Daily mean streamflows retrieved from the USGS National Water-Data Storage Retrieval
System (WATSTORE) were used to estimate daily mean base flows for selected streamflow-
gaging stations. These base flow values were then used to estimate mean ground-water
discharge and mean sustained ground-water discharge to the selected stream reaches. Only
the record for which low flow was either unregulated or only slightly regulated was used in
the analysis of each station. Because long-term steady-state conditions in the aquifer system
were to be represented by the estimates of ground-water discharge, the period selected for
analysis for each station was required to include wet and dry periods and at least 10 com-
plete water years of record. Wet and dry periods were determined by inspection of depar-
ture plots (fig. 7). [Departure plots illustrate departures of the average of the daily mean base
flows for each water year (annual mean base flow) from the corresponding average of the

r./
Z:nrzzlicr)?'nfl“él:?: 2?:25:;?&:;?;5?;&0;&]} iﬁﬁﬂ:’g&ﬁ 3;?3;?;;1::2;?;51 and during droughts in response to a decrease in recharge from precipitation; this decline water year 1988: U.S. Geological Survey Water-Data Report IN-88-1, p. 313. a° = $055£6000 § 2 i J / P 7 N
area boundary were compared with the wet and dry periods of the station within the group results in a substantial decrease in discharge to streams from the local ground-water-flow Gray, H.H., 1983, Map of Indiana showing thickness of unconsolidated deposits: Indiana Sel b e & \._ﬂ\ ; o 4 280 go \Q/
that had the longest period of record and was further downstream than other stations with systems. The population of daily mean base flows associated with the lower limbs of the Geological Survey, Miscellaneous Map 37, scale 1:500,000. ‘ | - — L o g 18
similar or shorter lengths of record. base-flow duration curves consists of the lowest daily mean base flows and is less variable Gray, H.H., Droste, J.B., Patton, J.B., Rexroad, C.B., and Shaver, R.H., 1985, Correlation ( / T \\ 2 1B 04156500
than the population associated with the upper limbs. This population seems to be more chart showing Paleozoic stratigraphic units of Indiana: Indiana Department of Natural S 750 ™\
dominated by discharge from regional and possibly intermediate ground-water-flow systems Resources, Geological Survey Supplement to Miscellaneous Map 48. }\ ) 4001l50 480 65 5001 50 Huntmgton e -\ 4, P
e TR T than the population associated with the upper limbs. Gray, HH., Ault, C.H., Keller, S.J., 1987, Bedrock geologic map of Indiana: Indiana f S 03325000 23y Lake . %, h /
' ' ' ] I [ Mean sustained ground-water discharge to the selected stream reaches was estimated by Geological Survey Miscellaneous Map 48, scale 1:500,000. < L 03324500 l X ,/“ D
computing the average of all daily mean base flows that contribute to the lower limb of the Gray, H.H., Forsyth, J.L., Schneider, A.F,, and Gooding, A.M., 1972, Geologic map of the 2 River alamonie hl-zo 10 y % ; .
w00} - base-flow-duration curve for the period selected for analysis for each streamflow-gaging Cincinnati quadrangle, Indiana and Ohio, showing bedrock and unconsolidated deposits: ) Mississinewa 2 ke 03323000 '\ e, y \\// —

Mean annual
base flow

200

ANNUAL DEPARTURE
IN CUBIC FEET PER SECOND
)

-200 flow d(ljxringi hig!] Cs}:remnﬂow? and dai%z(;sneafr; baset ﬂowsﬂ that are associated with sustained Whilie;uater River basin, Indiana: Water Resource Assessment 88-2, 126 p., 3 pls. in :' Q{/"‘ Ve L[ 3335000 I N D I A N A \\,\\ 03219500 Delaware
ground-water discharge are from periods of low streamflow. pocket. A Lake
i, e e o N e A S 1990, Water resource availability in the Kankakee River basin, Indiana: Water e o \ / /
1920 1930 1940 1950 1960 1970 1980 1980 ESTIMATED GROUND-WATER DISCHARGES FOR LONG-TERM STEADY-STATE Resource Assessment, 90-3, 247 p., 2 pls. in pocket. S . _ - + Tum
WATERYEAR CONDITIONS Johnson, G.H., and Keller, S.J., 1972, Geologic map of the Fort Wayne quadrangle, 3 J } o X e e (Z] e
Mean ground-water discharge for selected streamflow-gaging stations is shown in figure lndiana., Michigan, and. Ohio, showi_ng bedrock and unconsolidated deposits: Indiana { S . /' > o ;\ § ke
Figure 7. Departures of annual mean base flows from the mean annual base flow for 11. These values approximate the central tendency of ground-water discharge to the selected f%%%gbcgésmy Regional Geologic Map 8, Fort Wayne Sheet Part A, scale N o ’ 390 Riv o Shaughnessy &
streamflow-gaging station 04198000 on the Sandusky River, Ohio. Bars represent annual stream reaches from a combination of local, intermediate, and regional ground-water-flow Lan be WB : dlseri. K.T. 1960. General surf techni ral e T Morse : 120 Whiy / Reservoir
mean base flows. Bars above zero-departure line represent wet periods; bars below zero- systems. Each value represents the entire drainage basin above the corresponding station. g '2('1 2o an ! }s]en, : s . 5 ene iur face—waatﬂer feh mq]‘-‘esfgegece sl F e \ n Y 7 Beseroilr 3348500 e - . ~
departure line represent dry periods. Corresponding station numbers, station names, periods analyzed, and contributing drainage glfweic\?lggfgupégr;:g:r leS:{IImA(:n; gt. of manual of hydrology: U.S. Geologica \ .g o e i]lﬂ'o 17 i \/ )
e Larson, G.E., 1991, Development of Silurian and Devonian lithostratigraphic nomenclature, 2 . 2 & / P 1,000 170 94 A//J é ,\ -~ US2000004
Hydrograph-separation techniques were used to divide streamflow into direct runoff and central-western and northwestern Ohio: Ohio Department of Natural Resources, - = “ N i o /_,// 3 | 490 30
base flow components. Numerous methods of hydrograph separation are available, and Geological Survey Open-File Report 91-1, 1 pl. N ik ) ya S Eaglgz Creek / = 570
each method results in a slightly different estimate of direct runoff and base flow. A com- Table 1. Gaging stations for which streamflow and ground-water discharge statistics Lumb, A.M., Kittle, J.L., Jr., and Flynn, K.M., 1990, Users manual for ANNIE, a computer i P Reservoir 033 1009 R W \ 220
puter program (R.A. Sloto, U.S. Geological Survey, written commun., 1988) was used in this were estimated program for interactive hydrologic analysis and data management: U.S. Geological A\ e Reservoir - / . \Z T
investigation to implement the local-minimum method of hydrograph separation (fig. 8) [mi2 square miles; two-digit numbers after basin names refer to hydrologic unit codes in figure 11] Survey Water-Resources Investigations Report 89-4080, 236 p. : / ) / | / G / ‘ \ -
(Pettyjohn and Henning, 1979). The local-minimum method provides the most conservative ; ) - Norris, S.E., Cross, W.P,, and Goldthwait, R.P., 1950, The water resources of Greene / \\ % \ / Indianapoli s/ / L aiwes N
(lowest) estimate of daily mean base flows of the three methods described by Pettyjohn and Stat'gn o Penotd i D'a"(‘a%e) County, Ohio: Ohio Department of Natural Resources, Division of Water Bulletin 19, y \ o / f 4 : = k
Henning (1979) and was recommended by these authors for use in regional investigations. S o i i aaid e p. 23. ) A \ ( it | é
g ; ; ; . e = . . / / / | Dayton e [ “
Mean ground-water discharge to selected stream reaches was estimated by computing the OHIO RIVER BASIN (03) Norris, S.E., and Fidler, R.E., 1973, Availability of water from limestone and dolomite \ . & - /., { \ 809
average of all daily mean base flows for the period selected for analysis for each selected aquifers in southwest Ohio and the relation of water quality to the regional flow system: \\ \{J / i \< [ ) | / \ \
streamflow-gaging station. Scioto River Basin U.S. Geological Survey Water-Resources Investigations 17-73, 42 p. ’ - /= 50
03219500 Scioto River near Prospect, Ohio 1926-32; 1940-91 567 Pettyjohn, W.A., and Henning, R.J., 1979, Preliminary estimate of ground-water recharge \ % 4 /(/ aéo ( % \ 1° 01 033-1(;8 0
03229500 Big Walnut Creek at Rees, Ohio 1922-35; 1940-55 544 rates, related streamflow and water quality in Ohio: Columbus, Ohio State University, A\ \ \ &~ —— — V4 240 ., 03275000 \QS / - q3231 000 «
1 00 03230000 Scioto River near Circleville, Ohio 1940-51 2,635 Water Resources Center, Project Completion Report 553, 323 p. L N\ $ P g / L $/ S~ \ f
- 3 03230500 Big Darby Creek at Darbyville, Ohio 1922-35; 1939-88 534 Rupp, J.A., 1991, Structure and isopach maps of the paleozoic rocks of Indiana: Indiana \\ b 'i:’::c 1,200 7 Brookville| —
L ] 03231000 Deer Creek at Williamsport, Ohio 1927-35; 1939-56 333 Geological Survey Special Report 48, p. 40, 48. ™\ 1 ) &40 18 Reservoir 256 — e \ § \
! i 03231500 Scioto River at Chillicothe, Ohio 1922-88 3,849 Rupp, J.A., and Pennington, Dean, 1987, Determination of the 10,000 mg/1 TDS surface oy Biso Ay 035635 Isoo - < \ 1.360
% 03234000 Paint Creek near Bourneville, Ohio 1924-36; 1940-51  807* within the bedrock aquifers of Indiana: Indianapolis, Indiana Academy of Science, N \ River 03363 000/ 5 03242500 \_‘.//\,,/ ) \
Q 10,000 ¢ 3 03234500 Scioto River at Higby, Ohio 1930-86 5,131* [Proceedings], 1987, v. 97, p. 383-389. — 1,800 / 03: 176500‘ o |
E - Total streamflow ] 03237500 Ohio Brush Creek near West Union, Ohio 1927-35; 1941-88 387 SCOt’;, dJ -Cﬁql?\?l, Colm“];uter Isofftw::\re for gonverﬁfng ground-water anﬁ wat?r-qua]ity data } \ ) ( = k] . 03231500 //.
o i _ 1 < . rom the National Water Information System for use in a geographic information 3 ~ - \ /L
E e g ] Bgt;zgéag; Rz‘jwl; Basm e s b, hi 1940-5 677 system: U.S. Geological Survey Water-Resources Investigations Report 90-4200, 55 p. \ / \ \\ f/\\/‘“f 9102 { = . r/ 03234000 «86 & 3
g 03247050 Enst Fok Litle M River neer Botavia. Ohio 196676 352 S o e ames .S S SRS S Sepes iy o o 2 \ oy \\ X \
2 1000F . = -A, 33 p. o S ’ ~—103364000 ) .
§ - Great Miami River Basin Shaver, R.H., regional coordinator, 1985, Midwestern basin and arches region—Correlation / y N\ 2,500 \ / \\ —— 03234500
i B 03261500 Great Miami River at Sidney, Ohio 1915-88 541* of stratigraphic units of North America (COSUNA) project: American Association of ., g \’ N ? ‘ 430 )/ F — \ 2
2 03262700 Great Miami River at Troy, Ohio 1963-88 926 Petroleum Geologists, 1 sheet. = J 200 \ Y X ) f 883 N : } f
z 03263000 Great Miami River at Taylorsville, Ohio 1923-88 1,149 Shindel, H.L., Klingler, J.H., Mangus, J.P., and Trimble, L.E., 1991a, Water resources data, 39° |- //_ Monroe . c . = N\ 03247050 / S \vw
a3 03265000 Stillwater River at Pleasant Hill, Ohio - 1917-28;1936-88 503 Ohio, water year 1990: U.S. Geological Survey Water-Data Report OH-90-1, v. 1, . Lake 28 o" ) N\ ) N ( s \ O
03266000 Stillwater River at Englewood, Ohio 1927-88 650 305 p. Lz / BT / - ﬂf Ny J N 5 L g
03270000 Mad River near Dayton, Ohio 1916-21; 1925-73  635* ___1991b, Water resources data, Ohio, water year 1990: U.S. Geological Survey Water- 2 / : ‘\”L/ / (/ ”*L\/ < \
03272000 Twin Creek near Germantown, Ohio 1915-23; 1928-88 275" Data Report OH-90-2, v. 2, 281 p. . - \ ; ~
03274000 Great Miami River at Hamilton, Ohio 1932-88 3,630* Soller, D.R., 1986, Preliminary map showing the thickness of glacial deposits in Ohio: U.S. \2 f — \ 450 . l
OCT NOV DEC ‘ JAN FEB MAR APR MAY JUNE JULY AUG SEPT 03275000 Whitewater River near Alpine, Ind. 1929-88 522 Geological Survey Miscellaneous Field Studies Map 1862, scale 1:500,000. \ / } | I 100 3 A /) R
1968 1969 03276500 Whitewater River at Brookville, Ind. 1924-73 1,224 Stewart, J.S., and Nell, G.E., 1991, Water resources data, Indiana, water yYear 1990: U.S. J River ; Ol)io (_ 03237500 / \\ \H‘
T Geological Survey Water-Data Report IN-90-1, 340 p. r ( S ' . /J )
Figure 8. Example of hydrograph separation by the local-minimum method of Pettyjohn and 03323000 Wabash River at Bluffton, Ind. 1931-71 532° R R o | e 3 A,/ ,
Henning (1979) for the 1969 water year for streamflow-gaging station 04198000 on the 03324500 Salomonie River at Dora, Ind. 1925-64 557 ieSeSCt: diadaceporis i Dhic: Columogs, OisieSiote Uinverit 1 Miger's e, \5 \ / adl R 1/J“ - 1 & e \\» \.& } oy
Sandusky River, Ohio. 03325000 Wabash River at Wabash, Ind. 1924-34; 1936-64 1,768 ; . y . . A\\/,// [ ¥ % \ e, S : )
03327000 Mississinewa River at Peoria, Ind. 1953-63 808 S S5 LIS e e D i L N % \ A~ / o
, , 03328500 Eel River near Logansport, Ind. 1944-88 789 oo o e g FReaenegg Sn e Ca il L e Wi - ;
Base-flow-duration curves were constructed from the daily mean base flows for each 03329500 Wabash River at Delphi, Ind 1041-64 4.072 Todd, D.K., 1969, Ground water resources of the Upper Great Miami River basin and the - 7 - —~— ; O,
selected streamflow-gaging station. (Base-flow-duration curves are cumulative frequency 03321500 Tispecance River neat bra 'In d 1944-90 ’ 856 feasibility of their use for streamflow augmentation: Dayton, Ohio, Miami Conservancy @a‘ L{ \/L\\ S f/
curves that show the percentage of time during which specified base flows were equaled or 03335000 Wildcat Croek near Lafavette. Ind 1955-88 794 District, 142 p. = i PN \1 o , ?“ = {
exceeded in a given period.) It was observed that base-flow-duration curves for streamflow- 03335500 Wabash River at Lafayeti’: Ind 192464 7 267" __ 1980, Groundwater hydrology (2d ed.): New York, Wiley, p. 225. Patoka ) -~ 5 P ‘«ﬁv - p a {N y ( 1 giver
gaging stations along small tributary streams or streams that drain areas underlain by low 03348500 White River near Noblesvilie [r; d 1916-26. 1929-74 ’ 898" Toth, Jozsef, 1963, A theoretical analysis of groundwater flow in small drainage basins: River 4 ' X\\ 5 = > f = LT
permeability rock are made up of a single limb (fig. 9A), whereas base-flow-duration curves 03351000 White River near Nora. Ind. . 1930-55 1219 Journal of Geophysical Research, v. 68, no. 16, p. 4795-4812. p L _ \’L% % . /\;f\ 52 J
constructed for streamflow-gaging stations along regional drains or their principal tributary 03351500 Fall Creek near Fortville. Ind 1942-88 169 U.S. Environmental Protection Agency, 1984, National secondary drinking water @ \ — x E Y T = \
streams are made up of two limbs (fig. 9B). The lower limb of such curves, which is the 03361500 Big Blue River at Sh elby,vill e il 1944-88 421 regulations: U.S. Environmental Protection Agency, EPA-570/9-76-000, Appendix A. ) ) // . ¥ ’Vhi 48;19 i
missing limb on the single limb curves, commonly plots as a straight line on log-probability 03363000 Driftwood River near E dinbL;rgh Ind 1942-88 1.060 U.S. Geological Survey, 1973, Indiana base map: Reston, Va., scale 1:500,000. R, . /f / :K E N T U c K Y : . 2 - SWEST
paper and represents a flattening of the overall curve. The two limbs on these curves suggest 03363500 Flatrock River at St Paul Ind. 1931-88 '303* ____ 1977, Ohio base map: Reston, Va., scale 1:500,000. =N K { ~ & jﬂg = /’ A/_) 2 j
the presence of at least two sources of ground-water inflow to the regional drains and their 03364000 East Fork White River at ’Colu.mbus Ind 1949-88 1.707 ___ 1991, National water summary 1988-89—Hydrologic events and floods and droughts: ™ \ o ‘ { 2 (/\ N2 . 7\ s P <
e v — el Lo e ’1 n . blont 2’341 United States Geological Survey Water-Supply Paper 2375, p. 271-278; 443-450. \ k /_/ % W A s < - / 5— VIRG'INI A
, Ind. , 1999, National Atlas of the United States, Hydrologic Units map: Reston, Va., \ J - /‘( e j‘/) ;rankfﬂ \\ LL} . L J - > \
scale 1:3,500,000. ¢ & o < _ {/ R
oo oo ; ST LWRERCERNEE aaniel Willman, H.B., and others, comps., 1967, Geologic map of llinois: Iliinois State Geological o~ s | } ) o ? G | S ~\ / i 1) f | - R
%. 000 Station No. 03366500 ] Upperlimb  Sration No. 05520500 wteasys titting Gkl E_"e y b Base from U.S. Geological Survey digital data, 0 10 20 30 40 50 60 MILES Basin boundaries from The National Atlas of the United States,
- 2 Muscatatuck River, Indiana Kankakee River, lllinois 04178000 St. Joseph River near Newville, Ind. 1948-91 610 1:2.000,000, 1972 | | | I | | | Hydrologic Units map, 1:3,500,000, 1998
g Beriodoiiecord 109250 fencdioirecordiolge0 04182000 St. Marys River near Fort Wayne, Ind. 1932-33; 1935-88 762* T | | I I T T T =y
g 1o} 04183500 Maumee River at Antwerp, Ohio 1922-35; 1940-81 2,129* 0 10 20 30 40 50 60 KILOMETERS
§ 1.000F E 04185000 Tiffin River at Stryker, Ohio 1922-28; 1941-73 410
= 0% 04186500 Auglaize River near Fort Jennings, Ohio 1922-35; 1941-70  332*
z Yoweslimb 04189000 Blanchard River near Findlay, Ohio 1924-35; 1941-70 346 EXPLANATION
E 3 3 04192500 Maumee River near Defiance, Ohio 1964-74; 1979-85 5,545* - Mean stream discharge
S 04193500 Maumee River at Waterville, Ohio 1940-88 6,330 ==+ == Boundary of major river basin—Number indicates basin; 03, Ohio River Basin; 1,300 o Mean ground-water discharge
o Py T e e = 10 s = & & e 04195500 Portage River at Woodville, Ohio 1929-35; 194045 433 04, St. Lawrence River Basin; 05, Upper Mississippi River Basin 560~ , Mean sustained ground-water discharge
PERCENTAGE OFTIME BASE FLOW WAS EQUALED OR EXCEEDED PERCENTAGE OF TIME BASE FLOW WAS EQUALED OR EXCEEDED 04197000 Sandusky River near Mexico, Ohio 1924-35; 1939-82 774 150

Figure 9. Example of base-flow-duration curves for (A) small tributary streams or streams that
drain areas underlain by low permeability rock and (B) large regional drains or principal
tributary streams.

05517000 Yellow River at Knox, Ind. 1943-77 435
Superimposed base-flow-duration curves for a single streamflow-gaging station, con- 05518000 Kankakee River at Shelby, Ind. 1924-90 1,779 Figure 11. Mean stream discharge, mean ground-water discharge, and mean sustained ground-water discharge at selected streamflow-gaging stations for long-term steady-state conditions in the glacial-deposit and carbonate-bedrock aquifer system.
structed from periods of record that represent different ground-water recharge conditions, 05520500 Kankakee River at Momence, Ill. 1916-88 2.340
provide insight into the sources of ground-water inflow that result in the upper and lower 05526000 Iroquois River near Chesbanse, III. 1924-88 2,120

limbs of the curves for the regional drains and their principal tributary streams. The superim-

posed curves show that daily mean base flows that make up the upper limbs of the curves
are, in large part, from a source of ground-water inflow that readily responds to variations in
ground-water recharge from precipitation (fig. 10). This is evident from the differences in the
upper limbs of curves constructed from the entire period of record; from only summer
months, when potential evapotranspiration exceeds precipitation (Todd, 1969); and from a
period of drought (U.S. Geological Survey, 1991). The daily mean base flows that make up
the lower limbs of the curves are from a source of ground-water inflow not greatly affected by
variations in ground-water recharge from precipitation, as evident from the minimal differ-
ences between the lower limbs of the curves constructed for the different ground-water
recharge conditions (fig. 10).
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Figure 10. Base-flow-duration curves for streamflow-gaging station 05520500 on the
Kankakee River, Ill. constructed from periods of record that represent different ground-water
recharge conditions.

The population of daily mean base flows associated with the upper limbs seems to
consist of an appreciable amount of discharge from local ground-water-flow systems in
addition to discharge from intermediate and regional ground-water-flow systems. This is
because ground-water levels in local ground-water-flow systems readily decline in the summer

station. The base-flow-duration curves were constructed using the method described by
Searcy (1959), except that daily mean base flows were used instead of daily mean
streamflows. The base-flow-duration curves were constructed with the aid of a computer
program developed by Lumb and others (1990).

Although different methods of hydrograph separation resulted in slightly different
estimates of daily mean base flows, estimates of mean sustained ground-water discharge
computed from the estimates of base flow did not differ. This is probably because
hydrograph-separation techniques differ most in the way they separate direct runoff and base

04198000 Sandusky River near Fremont, Ohio 1924-35; 1939-89 1,251

UPPER MISSISSIPPI RIVER BASIN (05)

Illinois River Basin

* Low flow slightly regulated during period analyzed.

Mean sustained ground-water discharge for the streamflow-gaging stations is also shown
in figure 11. These values approximate the central tendency of the relatively stable compo-
nent of ground-water discharge to the selected stream reaches, which is predominantly from
regional and possibly intermediate ground-water flow systerns. The values represent the
entire drainage basin above the corresponding stations.

Mean sustained ground-water discharge ranges from 3 to 46 percent of mean ground-
water discharge for the selected streamflow-gaging stations for long-term steady-state
conditions. These percentages represent ground-water discharge throughout the entire
drainage basin above each streamflow-gaging station. Streams that correspond to the highest
sustained ground-water discharge as a percentage of ground-water discharge are the
Kankakee River in Indiana and lllinois and the Mad River in Ohio. Mean stream discharge,
which may be affected by regulation of flow, is presented in figure 11 for each streamflow-
gaging station as a frame of reference for the above ground-water-discharge data.
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